
Supermon User’s Guide

The Supermon Developers

September 18, 2002

2

Chapter 1

Introduction

Supermon is a set of programs and APIs for gathering and managing monitoring data from large-scale
clusters at high sampling rates. The basic supermon installation provides most system metrics of
interest to cluster users and administrators. This includes CPU load, network traffic, disk activity,
and memory information. Systems with supported sensor chipsets can also provide data such as
core temperature and fan speed directly from hardware for physical status monitoring. In addition,
user-level programs can use the monhole to take advantage of supermon’s efficient data transport
scheme for their own data. Examples of monhole usage include custom system monitors (for unusual
operating systems or custom hardware sensors) and application level events.

Figure 1 illustrates an example supermon system architecture for a cluster. The data servers,
mon, read data from /proc/sys/supermon; there is a single mon process running on each node (not
processor) of the cluster. The data concentrator, supermon, sends requests and composes data from
multiple sources; the sources may be mon programs or other data concentrators. Finally, user level
programs may add data to the data stream by connecting to the monhole.

Both mon and supermon use a hierarchical data protocol based on LISP-style symbolic expressions
(s-expressions). S-expressions are structurally self-describing, that is, no meta-data is needed in
regards to the semantics or typing of the contents of the data stream. S-expressions are also naturally
composable, thus greatly simplifying the job of supermon, the data concentrator. The format of this
protocol is described in Chapter 3.

Rather than the data server controlling sampling rates, data sampling is dictated by the clients
themselves. This allows supermon users to have some control over perturbation of cluster perfor-
mance due to monitoring. When no users or programs are gathering monitoring data, the supermon
system quietly moves into the background allowing application tasks to have full priority on the
cluster. Chapter 5 describes ways to tune supermon with a reasonable sampling rate for a particular
cluster.

Mon, supermon, monhole, and the s-expression library require basic UNIX features such as TCP
sockets, Unix domain sockets (for monhole), and basic signal and sleeping features. The only system-
specific portion of code in Supermon is the Linux kernel module used to provide the data index and
sampling entries in /proc/sys/supermon.

Supermon is part of a larger suite of cluster management and application software called Clus-
termatic. A core technology in Clustermatic is BProc, Linux kernel modifications that result in
greatly improved cluster process management. Though supermon can be used on any type of
cluster, this manual focuses on operation in the BProc Linux environment. From the stand-
point of supermon, the only difference is process start up and shut down which easily translates

3

4 CHAPTER 1. INTRODUCTION

into more traditional cluster environments. For more information on BProc and Clustermatic, see
http://www.clustermatic.org.

Currently supermon has been extensively tested under Linux. Additional work has been done
on MacOSX and Irix, so porting issues with these platforms should be minimal (with the exception
of the kernel module). Porting efforts will most likely revolve around creating a data source like the
Linux kernel module for the specific operating system being targetted.

5

/
p
r
o
c
/
s
y
s
/
s
u
p
e
r
m
o
n

m
o
n

m
o
n
h
o
l
e

/
p
r
o
c
/
s
y
s
/
s
u
p
e
r
m
o
n

m
o
n

m
o
n
h
o
l
e

/
p
r
o
c
/
s
y
s
/
s
u
p
e
r
m
o
n

m
o
n

m
o
n
h
o
l
e

/
p
r
o
c
/
s
y
s
/
s
u
p
e
r
m
o
n

m
o
n

m
o
n
h
o
l
e

s
u
p
e
r
m
o
n

Figure 1.1: Example supermon system architecture for a cluster. The data servers, mon, read data
from /proc/sys/supermon. The data concentrator, supermon, composes data from multiple sources.
Finally, user level programs may add data to the data stream by connecting to the monhole.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started

Building and running supermon is fairly straightforward. If your system does not already have
the supermon kernel module installed, you (or your system administrator) will need to install it.
Both mon and supermon can be run by unpriveliged users. Supermon is installed by default for
a Clustermatic software installation and other clustering packages that are based on BProc and
Supermon.

2.1 Building supermon

First, run the provided configure script to generate the makefiles and perform any system specific
configuration that is required.

% ./configure

Currently, configure is only used to detect the system type and find the C and C++ compilers.
After successfully finishing, run make to build the supermon package.

% make

This command builds the mon and supermon servers, the s-expression library used by the servers
and clients, and a set of test programs in the bench directory for benchmarking. By default, mon
expects data to be provided by two entries in /proc/sys/supermon. We provide a Linux kernel
module for this purpose. To build the kernel module, first figure out what kernel version you are
running on the nodes to be monitored. If the cluster is a BProc-based cluster, the following command
issued from the front end will return that information.

% bpsh nodenum uname -a

Assuming that your source tree for that kernel version is located in the linux-kernel version

subdirectory of /usr/src, then the following command can be executed from within the kernel
subdirectory to build the kernel module. For example, we keep kernel version 2.4.18 for our cluster
nodes in the directory /usr/src/linux-2.4.18-bproc/. In cases where the nodes are heterogeneous,

7

8 CHAPTER 2. GETTING STARTED

kernel modules must be built against each version of the kernel found on the nodes. After each
build, the supermon proc.o binary should be moved to the nodes or stored in a safe place since it
will get overwritten when running make for subsequent kernel versions.

% make LINUX=/usr/src/linux-kernel version

2.2 Running supermon

The basic supermon system requires three steps to start once it has been built. First, the nodes
that are to be monitored must have the supermon kernel module installed to provide the necessary
entries in /proc for gathering the raw data. Second, the nodes must also have a single instance of
the mon server running to provide the socket for clients to connect to to sample data. Finally, a
supermon server must be started on either a node, front-end, or some other system to gather data
from all nodes running mon and return it as a single cluster image.

Inserting the kernel module must be performed as root. Make sure that the .o file built in the
kernel subdirectory has been copied out to all of the nodes. For most purposes, copying it to /tmp
on each node is sufficient. Once it is out on the nodes, simply run /sbin/insmod as root to insert
the kernel module. On a BProc-based cluster, the following command will do the job.

bpsh -a /sbin/insmod /tmp/supermon proc.o

Note that this is the only part of the process that must be run as root. If supermon is going
to be used frequently, we recommend adding the module to the node startup process so that it is
loaded at boot time.

Starting the mon processes is very simple, as it requires only running the mon server in the
background on the nodes to monitor. Note that on BProc-based systems, the -N option must be
included on the bpsh command to turn off I/O forwarding.

% bpsh -aN mon &

At this point, we simply need to start a supermon server to connect to each node on port 2709
(registered in /etc/services for supermon) and gather data into a single cluster sample image.
The command line format is the port that supermon should open up to clients and the list of nodes
to monitor and the corresponding ports to listen on (if different than the default, 2709). Assuming
that mon has been run on its default port, we can start supermon on port 2710 on the current
machine and monitor five nodes with the following command.

% supermon -p 2710 n0 n1 n2 n3 n4

For starting supermon on BProc clusters, a script called runsupermon.pl is provided. This script
uses bpstat to determine which nodes are alive to build the proper supermon command line. Note
that the nodes in the list are represented by their hostname or IP address, and may have different
names than listed above.

2.3. BASIC MONITORING 9

((0x1 cpuinfo (nr (1 0xe04000a 0xf04000a 0x1004000a 0x1204000a))

(user nice system))

(0x2 avenrun (nr (1 0xe04000a 0xf04000a 0x1004000a 0x1204000a))

(avenrun0 avenrun1 avenrun2))

(0x4 paging (nr (1 0xe04000a 0xf04000a 0x1004000a 0x1204000a))

(pgpgin pgpgout pswpin pswpout))

(0x8 switch (nr (1 0xe04000a 0xf04000a 0x1004000a 0x1204000a))

(switch))

(0x10 time (nr (1 0xe04000a 0xf04000a 0x1004000a 0x1204000a))

(timestamp jiffies))

(0x20 netinfo (nr (2 0xe04000a 0xf04000a 0x1004000a 0x1204000a))

(name rxbytes rxpackets rxerrs rxdrop rxfifo rxframe

rxcompressed rxmulticast txbytes txpackets txerrs

txdrop txfifo txcolls txcarrier txcompressed))

)

Figure 2.1: Sample # command output from a 4 node cluster.

2.3 Basic monitoring

The simplest way to examine monitoring data from either a mon or supermon server is to telnet to
port 2709 (or whatever port is being used) on the host machine.

% telnet my host 2709

At this point, one can manually issue commands and read the responses as plaintext s-expressions.
The protocol for communicating with supermon and mon is described in detail in Chapter 3. Here
we highlight examples of the # and S commands.

2.3.1 The # command

In Figure 2.1, the response to a single # command is shown. It is in the format of a single s-expression
containing expressions for each category of data available. An expression describing a category shows
the bitmask for that category, the name, a list of node IDs with the corresponding arity, and the list
of variables in the category. We can see that this cluster has four nodes (by counting the IDs), each
containing a single CPU (arity of 1 on the category cpuinfo), and two network interfaces (arity of 2
on the category netinfo). This is sufficient data for a client to traverse and interpret the output of
the S command.

2.3.2 The S command

As illustrated in Figure 2.2, the structure of the S command result matches what was described in
the # command output. Each expression starts with the appropriate bitmask and category name,
followed by the node ID that provided the data for the given expression. This is then followed by a
single expression containing a sequence of expressions representing each variable in the category. The
variable expressions begin with the name of the variable followed by a sequence of atoms representing
the data itself. The length of this sequence matches the arity of the category as indicated by the #
command. For example, we see that for the netinfo category, where the arity was two in Figure 2.1,
each variable has two values. We can see that one of them has not been used at all, and has zeros

10 CHAPTER 2. GETTING STARTED

for each of its values (in this case, this is the loopback device lo), while the other device has handled
all of the network traffic.

It should be clear that for even a tiny cluster such as this, the amount of data that is returned in
a single sample can be rather large. To minimize the amount of wasteful data included in a sample,
clients can send together bitmasks indicating exactly which categories they want. For example, if
we only cared about the cpuinfo and switch categories, we could send a mask of 0x9. The result
of this is shown in Figure 2.3.

In practice, manually issuing commands and interpreting s-expressions is tedious and impractical.
A client program can be written in C, LISP, Perl, or any other language capable of connecting to
the server over a socket and interpreting the resulting s-expressions. Supermon currently includes
a very basic GTK+ based GUI client that will show a plot of data as it is being sampled. If users
have more sophisticated needs, supermon includes a library (used by supermon itself) for parsing,
traversing, and managing s-expressions from languages that do not support them already.

2.3. BASIC MONITORING 11

((0x1 cpuinfo 0xe04000a ((user 7) (nice 0) (system 299)))

(0x2 avenrun 0xe04000a ((avenrun0 0) (avenrun1 0) (avenrun2 0)))

(0x4 paging 0xe04000a ((pgpgin 0) (pgpgout 0) (pswpin 0) (pswpout 0)))

(0x8 switch 0xe04000a ((switch 152107)))

(0x10 time 0xe04000a ((timestamp 0x3d0fb8e7) (jiffies 16265062)))

(0x20 netinfo 0xe04000a ((name lo eth0) (rxbytes 0 13209479) (rxpackets 0 21835)

(rxerrs 0 0) (rxdrop 0 0) (rxfifo 0 0) (rxframe 0 0)

(rxcompressed 0 0) (rxmulticast 0 0) (txbytes 0 3089066)

(txpackets 0 22662) (txerrs 0 0) (txdrop 0 0) (txfifo 0 0)

(txcolls 0 0) (txcarrier 0 0) (txcompressed 0 0)))

(0x1 cpuinfo 0xf04000a ((user 6) (nice 0) (system 316)))

(0x2 avenrun 0xf04000a ((avenrun0 0) (avenrun1 0) (avenrun2 0)))

(0x4 paging 0xf04000a ((pgpgin 0) (pgpgout 0) (pswpin 0) (pswpout 0)))

(0x8 switch 0xf04000a ((switch 152076)))

(0x10 time 0xf04000a ((timestamp 0x3d0fc545) (jiffies 16265399)))

(0x20 netinfo 0xf04000a ((name lo eth0) (rxbytes 0 13208393) (rxpackets 0 21824)

(rxerrs 0 0) (rxdrop 0 0) (rxfifo 0 0) (rxframe 0 0)

(rxcompressed 0 0) (rxmulticast 0 0) (txbytes 0 3088184)

(txpackets 0 22655) (txerrs 0 0) (txdrop 0 0) (txfifo 0 0)

(txcolls 0 0) (txcarrier 0 0) (txcompressed 0 0)))

(0x1 cpuinfo 0x1004000a ((user 8) (nice 0) (system 327)))

(0x2 avenrun 0x1004000a ((avenrun0 0) (avenrun1 0) (avenrun2 0)))

(0x4 paging 0x1004000a ((pgpgin 0) (pgpgout 0) (pswpin 0) (pswpout 0)))

(0x8 switch 0x1004000a ((switch 152594)))

(0x10 time 0x1004000a ((timestamp 0x3d0fbba4) (jiffies 16265196)))

(0x20 netinfo 0x1004000a ((name lo eth0) (rxbytes 0 13209533) (rxpackets 0 21832)

(rxerrs 0 0) (rxdrop 0 0) (rxfifo 0 0) (rxframe 0 0)

(rxcompressed 0 0) (rxmulticast 0 0) (txbytes 0 3089058)

(txpackets 0 22667) (txerrs 0 0) (txdrop 0 0) (txfifo 0 0)

(txcolls 0 0) (txcarrier 0 0) (txcompressed 0 0)))

(0x1 cpuinfo 0x1204000a ((user 2) (nice 0) (system 305)))

(0x2 avenrun 0x1204000a ((avenrun0 0) (avenrun1 0) (avenrun2 0)))

(0x4 paging 0x1204000a ((pgpgin 0) (pgpgout 0) (pswpin 0) (pswpout 0)))

(0x8 switch 0x1204000a ((switch 152065)))

(0x10 time 0x1204000a ((timestamp 0x3d0fc16a) (jiffies 16265304)))

(0x20 netinfo 0x1204000a ((name lo eth0) (rxbytes 0 13207955) (rxpackets 0 21817)

(rxerrs 0 0) (rxdrop 0 0) (rxfifo 0 0) (rxframe 0 0)

(rxcompressed 0 0) (rxmulticast 0 0) (txbytes 0 3088756)

(txpackets 0 22661) (txerrs 0 0) (txdrop 0 0) (txfifo 0 0)

(txcolls 0 0) (txcarrier 0 0) (txcompressed 0 0)))

)

Figure 2.2: Sample S command output from a 4 node cluster.

((0x1 cpuinfo 0xe04000a ((user 7) (nice 0) (system 299)))

(0x8 switch 0xe04000a ((switch 152137)))

(0x1 cpuinfo 0xf04000a ((user 6) (nice 0) (system 317)))

(0x8 switch 0xf04000a ((switch 152108)))

(0x1 cpuinfo 0x1004000a ((user 8) (nice 0) (system 327)))

(0x8 switch 0x1004000a ((switch 152624)))

(0x1 cpuinfo 0x1204000a ((user 2) (nice 0) (system 305)))

(0x8 switch 0x1204000a ((switch 152097))))

Figure 2.3: Sample S command after sending a bitmask of 0x9 for filtering.

12 CHAPTER 2. GETTING STARTED

Chapter 3

The supermon protocol

In this chapter we describe the protocol for communicating with supermon and interpreting super-
mon output.

3.1 Symbolic Expressions

A symbolic expression, or s-expression, is essentially a LISP-like expression such as (a (b c)). S-
expressions are able to represent complex, structured data without requiring additional meta-data
describing the structure. They are recursively defined: an s-expression is a list of either atoms or
s-expressions. In the example above, the expression contains an atom “a” and an s-expression, which
in turn contains two atoms, “b” and “c”. They are simple, useful, and well understood.

Authors of clients will be able to either use standard LISP interpreters and compilers to deal
with s-expressions, or can use a library provided with Supermon. This library provides interfaces
in C, C++, and Python for parsing and traversing s-expressions from languages with no intrinsic
support for them.

Future plans for ‘filtermons’, or supermon servers that interpret and filter data as it is being
passed up to clients, involve embedding LISP interpreters into existing supermons to execute basic
LISP operations while sampling occurs.

3.2 The # command

The # command is used to query a supermon or mon server in order to find out what data it provides
and how it is structured. The set of data categories is provided, with their associated bitmask. For
each category, the set of variables is included. Finally, the ’arity’ of each node is given for each
category. For example, if a cluster contained two types of nodes, one with two processors and the
other with four, the cpuinfo category would list the node IDs with arity 2 (the dual processor
machines), and the node IDs with arity 4. This allows the client to understand the structure of
the expressions returned by the S command. The exact structure of the # command is shown in
Figure 3.1.

The nodeid is a unique identifier for a single node in the cluster. Currently this ID corresponds
to the IP address that supermon sees the node mon process listening on. The bitmask is a 32-bit
non-zero hexadecimal number. The list of variable names has a slightly different meaning depending
on its context. From a mon process, this list represents all data provided by that node in the

13

14 CHAPTER 3. THE SUPERMON PROTOCOL

(mask category (n (n1 nodeid · · · nodeid)
(n2 nodeid · · · nodeid)
· · ·)

(variable variable · · · variable))

Figure 3.1: The # command.

given category. Supermon on the other hand must determine the set of variables in a given category
provided by all of the mon processes that it is connected to. So supermon will return the intersection
of the variable sets from each mon process in each category. This guarantees that a sample will
contain no missing data for nodes that potentially do not provide a particular metric.

3.3 The S command

Once a client has determined the data that is provided by a supermon or mon server, it uses the S
command to retrieve samples of data. A single S command will yield a single sample of data. Like
the result of the # command, a single sample is encapsulated in a single s-expression. This expression
is a sequence of s-expressions containing a single category sample from a single node. The first three
atoms of each category expression are the bitmask of the category, its name, and the node ID that
provided the data. The final element of the expression is an expression containing the data itself. It
is a sequence of expressions, each containing a single atom providing the name of a variable followed
by a sequence of atoms containing the data itself. As explained earlier in Chapter 2, the number
of elements following the variable name corresponds to the arity of the category as given in the #
command.

3.3.1 Filtering

Filtering using bitmasks can reduce the size of a sample returned by the S command. The masks of
each category to be sampled can be combined using a basic logical ‘and’ operator. To set a mask for
filtering, a client simply must send the hexadecimal mask in plaintext to supermonor mon. The mask
can contain, but is not required to have, a prefix of 0x. Once a mask is set for a client, supermonand
monwill maintain that mask for the duration of the connection to the client. A separate mask is
maintained for each client. Although there is no command to reset the mask, simply sending a 32-bit
number with all bits set (0xffffffff) will cause this to occur.

3.4 Changes in the system

In large clusters, individual nodes are frequently rebooted, crash, or have other issues that may
cause a mon server to disappear temporarily. In addition, user-applications connect and disconnect
to the monhole. Supermon is able to notice these changes, but it is up to the client program to act
upon this change.

In either of these situations, it is possible that the S command output has change. These changes
are flagged to client applications by sending a special s-expression with mask 0x0 indicating that
either a client has gone away ((0x0 died (<IP address>) (hostname <name>))) or something has
changed ((0x0 changed (<IP address>))). When the client receives notification of such changes,
the data returned from S is not guaranteed to be valid until another # command is issued.

3.4. CHANGES IN THE SYSTEM 15

3.4.1 Reviving mon servers with the R command

Supermon does not automatically try to reconnect to mon servers that have died, due to its passive
nature and to prevent unnecessary delay incurred by network traffic and timeout periods in reconnect
attempts. The R command provides an explicit mechanism for clients to revive connections to mon
servers that have disappeared.

When a client decides to ask supermon to retry any dead clients, it sends R the command.
The response is an s-expression containing a list of s-expressions, one for each mon server that
was dead, indicating whether the server was successfully restarted ((0x0 revived (<IP address>)
(hostname <name>))) or is still dead ((0x0 dead (<IP address>) (hostname <name>))).

16 CHAPTER 3. THE SUPERMON PROTOCOL

Chapter 4

Monhole

The monhole allows user-level applications to insert data into the mon data stream, enabling them
to take advantage of the supermon infrastructure for fast monitoring and data collection. This
feature can be used to monitor the progress of an application, monitor special (unsupported) system
features such as new hardware sensor chips, and even correlate application performance with system
behavior. Currently, the default mon does not provide monhole support. To use the monhole,
mon with monhole should be run instead of mon. For the remainder of the chapter, we will use mon
to mean mon with monhole.

4.1 Basic monhole functions

A user-level application (client) can insert data into the mon data stream using the monhole li-
brary (libmonhole). There are three basic monhole functions: monhole open, monhole write, and
monhole close. Monhole open opens a connection to mon and initializes the connection, including
sending the pound command. Monhole write is used to write data to mon including changes to
the pound command. Monhole close shuts down the connection to mon. Figure 4.1 describes the
arguments and return values of each of the basic monhole functions.

name arguments return value

int monhole open(monhole t *, char *) monhole 0 on success
pound -1 otherwise

int monhole write(monhole t *, char *, int) monhole 0 on success
data string -1 otherwise
length

int monhole close(monhole t *) monhole 0 on success
-1 otherwise

Figure 4.1: Basic monhole functions: monhole open, monhole write, and monhole close.

17

18 CHAPTER 4. MONHOLE

pound (MONHOLE POUND

((category1 (nr num) (field1 field2 ...))

(category2 (nr num) (field1 field2 ...))

...

)

)

update (MONHOLE UPDATE

((category1 (field1 ...) (field2 ...))

(category2 (field1 ...) (field2 ...))

...

)

)

event (MONHOLE EVENT

((category1 (field1 ...) (field2 ...))

(category2 (field1 ...) (field2 ...))

...

)

)

Figure 4.2: Format of monhole data for pound, update and event. Category is the name of a
category of data, field is the name of each field in the category, and nr indicates that there are
num number of values for each field.

4.2 Monhole data format

The monhole accepts three different types of s-expressions: pound, update, or event. Pound is the
format of the data to be sent (i.e., response to the # command). Update is an update of the data
(i.e., response to the S command). Event is a special data field used to indicate the occurance of
some event (e.g., completion of a phase of the program). Events are only sent when they occur, not
with every S command, regardless of the mask. At this time, there can be only one event entry in
pound (though there may be many events within the entry), and it must be the last entry in pound.

The format of the s-expressions is similar to that of the supermon kernel module (i.e., entries in
/proc/sys/supermon). The primary difference is that each type of s-expression (pound, update, or
event) is tagged with its type. The format of the s-expressions is shown in Figure 4.2.

4.3 Testing and debugging clients

The monhole library comes with two facilities for testing and debugging clients: fakemon and data
checking functions.

Fakemon is a program that emulates the monhole only. Fakemon provides the same connection
endpoint, but prints various message (configurable) to aid in debugging the client. In addition,
fakemon is a user-level application that does not require the supermon kernel module and thus can
be run on any Linux machine. Monhole clients can connect directly to fakemon or mon without
change.

The primary difficulty in writing monhole clients is correctly formatting the s-expressions. The
monhole data checking functions verify the format of the data being sent to mon. These functions
are also used internally by mon itself to protect itself (and other upstream clients) against poorly
behaving monhole clients. There are two basic check functions (eight total for the various argument

4.3. TESTING AND DEBUGGING CLIENTS 19

name arguments return value

int monhole check pound(char *, int) # command 0 on success
int monhole check pound s(sexpr t *, int) verbose -1 otherwise

int monhole check data(monhole t *, char *, int) monhole 0 on success
int monhole check data ms(monhole t *, sexpr t *, int) data string -1 otherwise

verbose

int monhole check data p(char *, char *, int) # command 0 on success
int monhole check data s(sexpr t *, char *, int) data string -1 otherwise
int monhole check data ps(char *, sexpr t *, int) verbose
int monhole check data ss(sexpr t *, sexpr t *, int)

Figure 4.3: Monhole check functions: monhole check pound and monhole check data.

types): monhole check pound and monhole check data. Monhole check pound checks the given
pound command to ensure that it follows the correct format. Monhole check data checks the given
data (update or event) to ensure both that it follows the correct format and also that it matches the
given pound command. The check functions take as arguments pointers to either monhole t (for
pound only), sexpr t, or char (C “strings”).

Figure 4.3 describes the arguments and return values of each of the monhole check functions.
Currently, these functions are fairly simple, and do not check for duplicate categories or fields.

20 CHAPTER 4. MONHOLE

Chapter 5

Performance

Benchmarking supermon on specific clusters is a very important step in determining the appropriate
sampling rates for clients. Perturbation in terms of memory, network, and CPU usage due to
monitoring is unique to each cluster and application workload. Supermon includes a few basic
programs for benchmarking both mon, supermon, and the Linux kernel module.

5.1 Benchmarking supermon

As suspected, the difference in performance for reading a fixed length data set from /proc versus
over the network is so large that though a /proc benchmark is interesting, it is not very useful in
practice. The sampling rates over a network are so much lower than those possible from /proc that
a network benchmark is preferable over the single node kernel and /proc filesystem measurement.
Additionally, network load from monitoring will drastically impact message passing applications
sharing the same network resources, while moderate sampling rates of /proc will have significantly
less effect on applications. Understanding the different factors in monitoring is important to gather
meaningful information.

The network benchmark found in the bench directory, called bench3 uses a simple algorithm to
rapidly determine the peak sampling rate between the computer it is run on and the server it is
sampling from. Supermon users should test the peak sampling rates that they can achieve between
a client and supermon, and a client to a single mon. Using the bench3 application is simple. The
only required argument is the host name to connect to and test. Optional port and filter arguments
are available. For example, to benchmark a node called ’n4’ with a non-standard port (2345) and a
filter, we would use the following command:

% bench3 n4 2345 0x3

The output as the program runs will show the number of samples it is testing and how long they
took to complete. When it converges to a peak sampling rate, or detects two rates that it oscillates
between, the minimum peak rate is returned.

21

22 CHAPTER 5. PERFORMANCE

5.2 Determining a good sampling rate

Depending on the data being monitored, different sampling rates are appropriate. For example, on
certain mainboards monitoring hardware sensor information (such as fan speeds and motherboard
temperature sensors) is not valuable at any sampling rate above 0.5 Hz. This is due to the update
rate of the sensor data from the hardware. On the other hand, observing the behaviour of fast
processes such as MPI job startup requires sampling rates of approximately 10-20Hz. In both cases,
the rate must be chosen to capture the desired data while avoiding gathering redundant data and
wasting valuable system resources. As pointed out in the Supermon paper presented at Cluster
2002, the peak sampling rate is not useful as a practical rate, but allows one to get an idea of the
perturbation introduced into the system by a single sample. As the peak rate gets larger, the amount
of resources required for a single sample gets smaller, thus leaving more for applications to use.

In most cases, the bottleneck that determines the peak sampling rate will be the network. This is
expected due to the drastic difference between the throughput of a single computer versus a network
line for a sample worth of data. By avoiding using disk for data storage (as some monitoring systems
do), supermon keeps as much as possible in memory and extracts data from the kernel directly under
Linux. As a result of the network-limited performance of supermon, users should be careful when
determining the system configuration (i.e., the structure of the tree of supermon and mon servers
gathering the data to the client or front end node). The depth of the tree, defined as the maximum
number of socket connections traversed from the client to a mon, is very important to consider.
Since no compression or data reduction currently occurs on the path between the data source and
consumer1, each level in the hierarchy of servers will demand exactly one sample worth of resources.
Therefore a single sample in a hierarchy of depth three is equivalent in terms of system resource
consumption to three samples executed back to back over a single socket connection.

No standard or perfect method exists for determining a “good” sampling rate. Trial and error
with educated guesses is the best one can do. Knowledge of the cluster and the applications that
will be using it is necessary for determining what is best for each situation. The best suggestions
we have are restated below:

• Don’t sample faster than the data is updated.

• For a given metric, estimate the amount it changes naturally without monitoring. Choose a
sampling rate that will minimize the amount that monitoring contributes to this value.

1Filtering as data is gathered to the root or client node is a planned feature in upcoming releases of Supermon.

